1. Determine the general solution of \(\frac{\partial u}{\partial y} = 4ty \)

Since \(\frac{\partial u}{\partial y} = 4ty \) then
\[
 u = \int 4ty \, dy = (4t) \int y \, dy \\
 = (4t) \frac{y^2}{2} + f(t) = 2ty^2 + f(t)
\]
i.e.
\[
 u = 2ty^2 + f(t)
\]

2. Solve \(\frac{\partial u}{\partial t} = 2t \cos \theta \) given that \(u = 2t \) when \(\theta = 0 \)

Since \(\frac{\partial u}{\partial t} = 2t \cos \theta \) then
\[
 u = \int 2t \cos \theta \, dt = (2 \cos \theta) \int t \, dt \\
 = (2 \cos \theta) \frac{t^2}{2} + f(\theta) = t^2 \cos \theta + f(\theta)
\]

\(u = 2t \) when \(\theta = 0 \), hence,
\[
 2t = t^2 + f(\theta)
\]

from which,
\[
 f(\theta) = 2t - t^2
\]

Hence,
\[
 u = t^2 \cos \theta + 2t - t^2
\]
or
\[
 u = t^2 (\cos \theta - 1) + 2t
\]

3. Verify that \(u(\theta, t) = \theta^2 + \theta t \) is a solution of \(\frac{\partial u}{\partial \theta} - 2 \frac{\partial u}{\partial t} = t \)

\[
 \frac{\partial u}{\partial \theta} = 2\theta + t \quad \text{and} \quad \frac{\partial u}{\partial t} = 0 + \theta = \theta
\]

Hence,
\[
 \frac{\partial u}{\partial \theta} - 2 \frac{\partial u}{\partial t} = (2\theta + t) - 2(\theta) = 2\theta + t - 2\theta = t
\]
which verifies that \(\frac{\partial u}{\partial \theta} - 2 \frac{\partial u}{\partial t} = t \)
4. Verify that \(u = e^{-y} \cos x \) is a solution of \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \)

Since \(u = e^{-y} \cos x \) then \(\frac{\partial u}{\partial x} = e^{-y} (-\sin x) \) and \(\frac{\partial^2 u}{\partial x^2} = -e^{-y} \cos x \)

Also, \(\frac{\partial u}{\partial y} = -e^{-y} \cos x \) and \(\frac{\partial^2 u}{\partial x^2} = e^{-y} \cos x \)

Hence, \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -e^{-y} \cos x + e^{-y} \cos x = 0 \)

5. Solve \(\frac{\partial^2 u}{\partial x \partial y} = 8 e^y \sin 2x \) given that at \(y = 0 \), \(\frac{\partial u}{\partial x} = \sin x \), and at \(x = \frac{\pi}{2} \), \(u = 2 y^2 \)

Since \(\frac{\partial^2 u}{\partial x \partial y} = 8 e^y \sin 2x \) then integrating partially with respect to \(y \) gives:

\[
\frac{\partial u}{\partial x} = \int 8 e^y \sin 2x \, dy = 8 e^y \sin 2x + f(x)
\]

From the boundary conditions, \(\frac{\partial u}{\partial x} = \sin x \) when \(y = 0 \), hence

\[
\sin x = 8 e^0 \sin 2x + f(x) \quad \text{from which, } \quad f(x) = \sin x - 8 \sin 2x
\]

i.e. \(\frac{\partial u}{\partial x} = 8 e^y \sin 2x + \sin x - 8 \sin 2x \)

Integrating partially with respect to \(x \) gives:

\[
u = \int [8 e^y \sin 2x + \sin x - 8 \sin 2x] \, dx = -4 e^y \cos 2x - \cos x + 4 \cos 2x + f(y)
\]

From the boundary conditions, \(u = 2 y^2 \) when \(x = \frac{\pi}{2} \), hence

\[
2 y^2 = -4 e^y \cos \pi - 0 + 4 \cos \pi + f(y)
\]

\[
= 4 e^y - 4 + f(y) \quad \text{from which, } \quad f(y) = 2 y^2 - 4 e^y + 4
\]

Hence, the solution of \(\frac{\partial^2 u}{\partial x \partial y} = 8 e^y \sin 2x \) is given by:

\[
u = -4 e^y \cos 2x - \cos x + 4 \cos 2x + 2 y^2 - 4 e^y + 4
\]
6. Solve \(\frac{\partial^2 u}{\partial x^2} = y(4x^2 - 1) \) given that at \(x = 0 \), \(u = \sin y \) and \(\frac{\partial u}{\partial x} = \cos 2y \\

Since \(\frac{\partial^2 u}{\partial x^2} = y(4x^2 - 1) \) then \(\frac{\partial u}{\partial x} = \int y(4x^2 - 1) \, dx = y\left(\frac{4x^3}{3} - x\right) + f(y) \)

\(x = 0 \) when \(\frac{\partial u}{\partial x} = \cos 2y \), hence, \(\cos 2y = 0 + f(y) \)

Hence, \(\frac{\partial u}{\partial x} = y\left(\frac{4x^3}{3} - x\right) + \cos 2y \)

and \(u = \int \left[y\left(\frac{4x^3}{3} - x\right) + \cos 2y\right] \, dx = y\left(\frac{x^4}{3} - \frac{x^2}{2}\right) + x \cos 2y + F(y) \)

\(x = 0 \) when \(u = \sin y \), hence, \(\sin y = F(y) \)

Thus, \(u = y\left(\frac{x^4}{3} - \frac{x^2}{2}\right) + x \cos 2y + \sin y \)

7. Solve \(\frac{\partial^2 u}{\partial x \partial t} = \sin(x + t) \) given that \(\frac{\partial u}{\partial x} = 1 \) when \(t = 0 \), and when \(u = 2t \) when \(x = 0 \)

Since \(\frac{\partial^2 u}{\partial x \partial t} = \sin(x + t) \) then integrating partially with respect to \(t \) gives:

\(\frac{\partial u}{\partial x} = \int \sin(x + t) \, dt = -\cos(x + t) + f(x) \)

From the boundary conditions, \(\frac{\partial u}{\partial x} = 1 \) when \(t = 0 \), hence

\(1 = -\cos x + f(x) \) from which, \(f(x) = 1 + \cos x \)

i.e. \(\frac{\partial u}{\partial x} = -\cos(x + t) + 1 + \cos x \)

Integrating partially with respect to \(x \) gives:

\(u = \int \left[-\cos(x + t) + 1 + \cos x\right] \, dx = -\sin(x + t) + x + \sin x + f(t) \)

From the boundary conditions, \(u = 2t \) when \(x = 0 \), hence

\(2t = -\sin t + 0 + \sin 0 + f(t) = -\sin t + f(t) \) from which, \(f(t) = 2t + \sin t \)
Hence, the solution of \(\frac{\partial^2 u}{\partial x \partial t} = \sin(x+t)\) is given by:

\[u = -\sin(x+t) + x + \sin x + 2t + \sin t \]

8. Show that \(u(x, y) = xy + \frac{x}{y}\) is a solution of \(2x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = 2x\)

Since \(u = xy + \frac{x}{y}\) then \(\frac{\partial u}{\partial x} = y + \frac{1}{y}\) and \(\frac{\partial u}{\partial y} = x - \frac{x}{y^2} = x - xy^{-2}\)

and \(\frac{\partial^2 u}{\partial y^2} = \frac{2x}{y^3}\)

Also, \(\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial x} \left(x - \frac{x}{y^2}\right) = 1 - \frac{1}{y^2}\)

Hence, \(L.H.S. = 2x \frac{\partial^2 u}{\partial x \partial y} + y \frac{\partial^2 u}{\partial y^2} = 2x \left(1 - \frac{1}{y^2}\right) + y \left(\frac{2x}{y^3}\right)\)

\[= 2x - \frac{2x}{y^2} + \frac{2x}{y^2} = 2x = R.H.S.\]

9. Find the particular solution of the differential equation \(\frac{\partial^2 y}{\partial x \partial y} = \cos x \cos y\) given the initial conditions that when \(y = \pi\), \(\frac{\partial u}{\partial x} = x\), and when \(x = \pi\), \(u = 2 \cos y\).

Since \(\frac{\partial^2 y}{\partial x \partial y} = \cos x \cos y\) then integrating partially with respect to \(y\) gives:

\[\frac{\partial u}{\partial x} = \int \cos x \cos y \, dy = \cos x \sin y + f(x)\]

From the boundary conditions, \(\frac{\partial u}{\partial x} = x\) when \(y = \pi\), hence

\[x = \cos x \sin \pi + f(x)\]

from which, \(f(x) = x\)

i.e. \(\frac{\partial u}{\partial x} = \cos x \sin y + x\)

Integrating partially with respect to \(x\) gives:
\[u = \int [\cos x \sin y + x] \, dx = \sin x \sin y + \frac{x^2}{2} + f(y) \]

From the boundary conditions, \(u = 2 \cos y \) when \(x = \pi \), hence

\[
2 \cos y = \sin \pi \sin y + \frac{\pi^2}{2} + f(y)
\]

\[
= \frac{\pi^2}{2} + f(y) \quad \text{from which, } \quad f(y) = 2 \cos y - \frac{\pi^2}{2}
\]

Hence, the solution of \(\frac{\partial^2 y}{\partial x \partial y} = \cos x \cos y \) is given by:

\[
u = \sin x \sin y + \frac{x^2}{2} + 2 \cos y - \frac{\pi^2}{2}
\]

10. Verify that \(\phi(x, y) = x \cos y + e^{x} \sin y \) satisfies the differential equation

\[
\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + x \cos y = 0
\]

Since \(\phi = x \cos y + e^{x} \sin y \) then \(\frac{\partial \phi}{\partial x} = \cos y + e^{x} \sin y \) and \(\frac{\partial^2 \phi}{\partial x^2} = e^{x} \sin y \)

and

\[
\frac{\partial \phi}{\partial y} = -x \sin y + e^{x} \cos y \quad \text{and} \quad \frac{\partial^2 \phi}{\partial y^2} = -x \cos y - e^{x} \sin y
\]

Hence, \(\text{L.H.S.} = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + x \cos y = e^{x} \sin y + (x \cos y) + x \cos y = e^{x} \sin y - x \cos y - e^{x} \sin y + x \cos y = 0 = \text{R.H.S.} \)
EXERCISE 319 Page 888

1. Solve $T'' = c^2 \mu T$ given $c = 3$ and $\mu = 1$

Since $T'' = c^2 \mu T$ and $c = 3$ and $\mu = 1$, then $T'' - (3)^2(1)T = 0$ i.e. $T'' - 9T = 0$

If $T'' - 9T = 0$ then the auxiliary equation is:

$$m^2 - 9 = 0 \quad \text{i.e.} \quad m^2 = 9 \quad \text{from which,} \quad m = \sqrt{9} = \pm 3$$

Thus, the general solution is: $T = Ae^{3t} + Be^{-3t}$

2. Solve $T'' - c^2 \mu T = 0$ given $c = 3$ and $\mu = -1$

Since $T'' - c^2 \mu T = 0$ and $c = 3$ and $\mu = -1$, then $T'' - (3)^2(-1)T = 0$ i.e. $T'' + 9T = 0$

If $T'' + 9T = 0$ then the auxiliary equation is:

$$m^2 + 9 = 0 \quad \text{i.e.} \quad m^2 = -9 \quad \text{from which,} \quad m = \sqrt{-9} = \pm 3j \quad \text{or} \quad 0 \pm 3j$$

Thus, the general solution is: $T = e^t \{A \cos 3t + B \sin 3t\}$

$$= A \cos 3t + B \sin 3t$$

3. Solve $X'' = \mu X$ given $\mu = 1$

Since $X'' = \mu X$ and $\mu = 1$, then $X'' - X = 0$

If $X'' - X = 0$ then the auxiliary equation is:

$$m^2 - 1 = 0 \quad \text{i.e.} \quad m^2 = 1 \quad \text{from which,} \quad m = 1 \quad \text{or} \quad m = -1$$

Thus, the general solution is: $X = Ae^t + Be^{-t}$

4. Solve $X'' - \mu X = 0$ given $\mu = -1$

Since $X'' - \mu X = 0$ and $\mu = -1$, then $X'' + X = 0$

If $X'' + X = 0$ then the auxiliary equation is:
\[m^2 + 1 = 0 \quad \text{i.e.} \quad m^2 = -1 \quad \text{from which,} \quad m = \sqrt{-1} = \pm j \]

Thus, the general solution is:

\[X = e^0 \left\{ A \cos x + B \sin x \right\} \]

\[= A \cos x + B \sin x \]
1. An elastic string is stretched between two points 40 cm apart. Its centre point is displaced 1.5 cm from its position of rest at right-angles to the original direction of the string and then released with zero velocity. Determine the subsequent motion $u(x, t)$ by applying the wave equation

$$\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \quad \text{with} \quad c^2 = 9$$

The elastic string is shown in the diagram below

\[u(x, 0) = f(x) = \frac{1.5}{20} x \quad 0 \leq x \leq 20 \]

\[= -\frac{1.5}{20} x + 3 = \frac{60 - 1.5x}{20} \quad 20 \leq x \leq 40 \]

\[\left[\frac{\partial u}{\partial t} \right]_{t=0} = 0 \quad \text{i.e. zero initial velocity} \]

2. Assuming a solution $u = XT$, where X is a function of x only, and T is a function of t only,

then $\frac{\partial u}{\partial x} = X'T$ and $\frac{\partial^2 u}{\partial x^2} = X''T$ and $\frac{\partial u}{\partial y} = XT'$ and $\frac{\partial^2 u}{\partial y^2} = XT''$

Substituting into the partial differential equation, $\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}$

gives: $X''T = \frac{1}{c^2} XT''$ i.e. $X''T = \frac{1}{9} XT''$ since $c^2 = 9$

3. Separating the variables gives:

$$\frac{X''}{X} = \frac{T''}{9T}$$
Let constant, \(\mu = \frac{X''}{X} = \frac{T''}{9T} \) then \(\mu = \frac{X''}{X} \) and \(\mu = \frac{T''}{9T} \)

from which, \(X'' - \mu X = 0 \) and \(T'' - 9\mu T = 0 \)

4. Letting \(\mu = -p^2 \) to give an oscillatory solution gives

\[X'' + p^2 X = 0 \]

and the auxiliary equation is: \(m^2 + p^2 = 0 \) from which, \(m = \sqrt{-p^2} = \pm jp \)

and \(T'' + 9p^2 T = 0 \) and the auxiliary equation is:

\[m^2 + 9p^2 = 0 \]

from which, \(m = \sqrt{-9p^2} = \pm 3jp \)

5. Solving each equation gives: \(X = A \cos px + B \sin px \) and \(T = C \cos 3pt + D \sin 3pt \)

Thus, \(u(x,t) = \{A \cos px + B \sin px\} \{C \cos 3pt + D \sin 3pt\} \)

6. Applying the boundary conditions to determine constants \(A \) and \(B \) gives:

(i) \(u(0,t) = 0 \), hence \(0 = A \{C \cos 3pt + D \sin 3pt\} \) from which we conclude that \(A = 0 \)

Therefore, \(u(x,t) = B \sin px \{C \cos 3pt + D \sin 3pt\} \) \hspace{1cm} (1)

(ii) \(u(40,t) = 0 \), hence \(0 = B \sin 40p \{C \cos 3pt + D \sin 3pt\} \)

\(B \neq 0 \) hence \(\sin 40p = 0 \) from which, \(40p = n\pi \) and \(p = \frac{n\pi}{40} \)

7. Substituting in equation (1) gives: \(u(x,t) = B \sin \frac{n\pi x}{40} \left\{C \cos \frac{3n\pi t}{40} + D \sin \frac{3n\pi t}{40}\right\} \)

or, more generally, \(u_n(x,t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{40} \left\{A_n \cos \frac{3n\pi t}{40} + B_n \sin \frac{3n\pi t}{40}\right\} \) \hspace{1cm} (2)

where \(A_n = BC \) and \(B_n = BD \)

8. From equation (8), page 890 of textbook,

\[A_n = \frac{2}{L} \int_0^L f(x) \sin \frac{n\pi x}{L} \, dx \]

\[= \frac{2}{40} \left[\int_0^{20} \left(1.5 - 1.5x \right) \sin \frac{n\pi x}{40} \, dx + \int_0^{40} \left(60 - 1.5x \right) \sin \frac{n\pi x}{40} \, dx \right] \]

Each integral is determined using integration by parts (see Chapter 68, page 739) with the result:

\[A_n = \frac{(8)(1.5)}{n^2 \pi^2} \sin \frac{n\pi}{2} = \frac{12}{n^2 \pi^2} \sin \frac{n\pi}{2} \]
From equation (9), page 890 of textbook, \(B_n = \frac{2}{cn\pi} \int_0^L g(x) \sin \frac{n\pi x}{L} \, dx \)

\[
\left[\frac{\partial u}{\partial t} \right]_{t=0} = 0 = g(x) \quad \text{thus,} \quad B_n = 0
\]

Substituting into equation (2) gives:

\[
u_n(x, t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{40} \left\{ A_n \cos \frac{3n\pi t}{40} + B_n \sin \frac{3n\pi t}{40} \right\}
\]

\[
= \sum_{n=1}^{\infty} \sin \frac{n\pi x}{40} \left\{ \frac{12}{n^2\pi^2} \sin \frac{n\pi}{2} \cos \frac{3n\pi t}{40} + (0) \sin \frac{n\pi t}{50} \right\}
\]

Hence,

\[
u(x, t) = \frac{12}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi x}{2} \sin \frac{n\pi x}{40} \cos \frac{3n\pi t}{40}
\]

2. The centre point of an elastic string between two points \(P \) and \(Q \), 80 cm apart, is deflected a distance of 1 cm from its position of rest perpendicular to \(PQ \) and released initially with zero velocity. Apply the wave equation \(\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2} \) where \(c = 8 \), to determine the motion of a point distance \(x \) from \(P \) at time \(t \).

The elastic string is shown in the diagram below.

The boundary and initial conditions given are:

\[
u(0, t) = 0 \quad \begin{cases} \vspace{1em}
\nu(80, t) = 0
\end{cases}
\]

\[
u(x, 0) = f(x) = \begin{cases} \vspace{1em}
\frac{1}{40} x & \text{if} \quad 0 \leq x \leq 40 \\
-\frac{1}{40} x + 2 & \text{if} \quad 40 \leq x \leq 80
\end{cases}
\]
\[
\left[\frac{\partial u}{\partial t} \right]_{t=0} = 0 \quad \text{i.e. zero initial velocity}
\]

Assuming a solution \(u = XT \), where \(X \) is a function of \(x \) only, and \(T \) is a function of \(t \) only,
then \(\frac{\partial u}{\partial x} = X'T \) and \(\frac{\partial^2 u}{\partial x^2} = X'^2T \) and \(\frac{\partial u}{\partial y} = XT' \) and \(\frac{\partial^2 u}{\partial y^2} = XT'' \)

Substituting into the partial differential equation,
\[
\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 u}{\partial t^2}
\]
gives:
\[
X'^2T = \frac{1}{c^2} XT'' \quad \text{i.e.} \quad X'^2T = \frac{1}{64} XT'' \quad \text{since} \ c = 8
\]

Separating the variables gives:
\[
\frac{X''}{X} = \frac{T''}{64T}
\]

Let constant, \(\mu = \frac{X''}{X} = \frac{T''}{64T} \) then \(\mu = \frac{X''}{X} \) and \(\mu = \frac{T''}{64T} \)

from which,
\[
X'' - \mu X = 0 \quad \text{and} \quad T'' - 64 \mu T = 0
\]

Letting \(\mu = -p^2 \) to give an oscillatory solution gives
\[
X'' + p^2 X = 0 \quad \text{and the auxiliary equation is:} \quad m^2 + p^2 = 0 \quad \text{from which,} \quad m = \sqrt{-p^2} = \pm j p
\]
and \(T'' + 64 p^2 T = 0 \) \quad \text{and the auxiliary equation is:}
\[
m^2 + 64 p^2 = 0 \quad \text{from which,} \quad m = \sqrt{-64 p^2} = \pm j8 p
\]

Solving each equation gives:
\[
X = A \cos px + B \sin px \quad \text{and} \quad T = C \cos 8pt + D \sin 8pt
\]

Thus, \(u(x, t) = \{ A \cos px + B \sin px \} \{ C \cos 8pt + D \sin 8pt \} \)

Applying the boundary conditions to determine constants \(A \) and \(B \) gives:

(i) \(u(0, t) = 0 \), hence \(0 = A \{ C \cos 8pt + D \sin 8pt \} \) from which we conclude that \(A = 0 \)

Therefore, \(u(x, t) = B \sin px \{ C \cos 8pt + D \sin 8pt \} \) \quad (1)

(ii) \(u(80, t) = 0 \), hence \(0 = B \sin 80p \{ C \cos 8pt + D \sin 8pt \} \)

\(B \neq 0 \) hence \(\sin 80p = 0 \) from which, \(80p = n\pi \) and \(p = \frac{n\pi}{80} \)

Substituting in equation (1) gives:
\[
u(x, t) = B \sin \frac{n\pi x}{80} \left\{ C \cos \frac{8n\pi t}{80} + D \sin \frac{8n\pi t}{80} \right\}
\]

or, more generally,
\[
u_n(x, t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{80} \left\{ A_n \cos \frac{n\pi t}{10} + B_n \sin \frac{n\pi t}{10} \right\} \quad (2)
\]
\[A_n = \frac{(8)(1)}{n^2\pi^2} \sin \frac{n\pi}{2} = \frac{8}{n^2\pi^2} \sin \frac{n\pi}{2} \]

\[B_n = \frac{2}{cn\pi} \int_0^L g(x) \sin \frac{n\pi x}{L} \, dx \quad \left[\frac{\partial u}{\partial t} \right]_{t=0} = 0 = g(x) \quad \text{thus, } B_n = 0 \]

Substituting into equation (2) gives:

\[u_n(x, t) = \sum_{n=1}^{\infty} \sin \frac{n\pi x}{80} \left\{ A_n \cos \frac{n\pi t}{10} + B_n \sin \frac{n\pi t}{10} \right\} \]

\[= \sum_{n=1}^{\infty} \sin \frac{n\pi x}{80} \left\{ \frac{8}{n^2\pi^2} \sin \frac{n\pi}{2} \cos \frac{n\pi t}{10} + (0) \sin \frac{n\pi t}{10} \right\} \]

Hence,

\[u(x, t) = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi x}{2} \sin \frac{n\pi t}{80} \cos \frac{n\pi t}{10} \]
1. A metal bar, insulated along its sides, is 4 m long. It is initially at a temperature of 10°C and at

time \(t = 0 \), the ends are placed into ice at 0°C. Find an expression for the temperature at a point \(P \)
at a distance \(x \) m from one end at any time \(t \) seconds after \(t = 0 \)

The temperature \(u \) along the length of the bar is shown in the diagram below

The heat conduction equation is

\[
\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t}
\]

and the given boundary conditions are:

\[u(0, t) = 0, \quad u(4, t) = 0 \quad \text{and} \quad u(x, 0) = 10 \]

Assuming a solution of the form \(u = XT \), then, \(X = A \cos px + B \sin px \)

and

\[T = k e^{-\frac{c^2}{4}t} \]

Thus, the general solution is given by:\n
\[u(x, t) = \{P \cos px + Q \sin px\} e^{-\frac{c^2}{4}t} \]

\[u(0, t) = 0 \quad \text{thus} \quad 0 = P e^{-\frac{c^2}{4}t} \quad \text{from which} \quad P = 0 \quad \text{and} \quad u(x, t) = \{Q \sin px\} e^{-\frac{c^2}{4}t} \]

Also, \(u(4, t) = 0 \quad \text{thus} \quad 0 = \{Q \sin 4p\} e^{-\frac{c^2}{4}t} \)

Since \(Q \neq 0 \), \(\sin 4p = 0 \) from which, \(4p = n\pi \) where \(n = 1, 2, 3, \ldots \) and \(p = \frac{n\pi}{4} \)

Hence,

\[u(x, t) = \sum_{n=1}^{\infty} \left\{Q_n e^{-\frac{c^2}{4}t} \sin \frac{n\pi x}{4}\right\} \]

The final initial condition given was that at \(t = 0, u = 10 \), i.e. \(u(x, 0) = f(x) = 10 \)

Hence,

\[10 = \sum_{n=1}^{\infty} \left\{Q_n \sin \frac{n\pi x}{4}\right\} \]
where, from Fourier coefficients, \(Q_n = 2 \times \text{mean value of } 10 \sin \frac{n\pi x}{4} \) from \(x = 0 \) to \(x = 4 \)

i.e. \(Q_n = \frac{2}{4} \int_0^4 10 \sin \frac{n\pi x}{4} \, dx = 5 \left[-\frac{\cos \frac{n\pi x}{4}}{\frac{n\pi}{4}} \right]_0^4 = -\frac{20}{n\pi} \left[\cos \frac{4n\pi}{4} - \cos 0 \right] = \frac{20}{n\pi} (1 - \cos n\pi) \)

\[= 0 \text{ (when } n \text{ is even) and } \frac{40}{n\pi} \text{ (when } n \text{ is odd)} \]

Hence, the required solution is: \(u(x, t) = \sum_{n=1}^\infty Q_n e^{-px^2/16} \sin \frac{n\pi x}{4} \)

\[= \frac{40}{\pi} \sum_{n=\text{odd}}^\infty \frac{1}{n} e^{-\frac{n^2\pi^2}{16}} \sin \frac{n\pi x}{4} \]

2. An insulated uniform metal bar, 8 m long, has the temperature of its ends maintained at 0°C, and at time \(t = 0 \) the temperature distribution \(f(x) \) along the bar is defined by \(f(x) = x(8 - x) \). If \(c^2 = 1 \), solve the heat conduction equation \(\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t} \) to determine the temperature \(u \) at any point in the bar at time \(t \).

The temperature \(u \) along the length of bar is shown in the diagram below

The heat conduction equation is \(\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t} \) and the given boundary conditions are:

\[u(0, t) = 0, \quad u(8, t) = 0 \quad \text{and} \quad u(x, 0) = 0\]

Assuming a solution of the form \(u = XT \), then, \(X = A \cos px + B \sin px \)

and \(T = k e^{-px^2t} \)

Thus, the general solution is given by: \(u(x, t) = \{ P \cos px + Q \sin px \} e^{-px^2t} \)

\(u(0, t) = 0 \) thus \(0 = P e^{-p^2t} \) from which, \(P = 0 \) and \(u(x, t) = \{ Q \sin px \} e^{-px^2t} \)

Also, \(u(8, t) = 0 \) thus \(0 = \{ Q \sin 8p \} e^{-8px^2t} \)
Since $Q \neq 0$, $\sin 8p = 0$ from which, $8p = n\pi$ where $n = 1, 2, 3, \ldots$ and $p = \frac{n\pi}{8}$

Hence, \[u(x, t) = \sum_{n=1}^{\infty} \left\{ Q_n e^{-p^2ct} \sin \frac{n\pi x}{8} \right\} \]

The final initial condition given was that at $t = 0$, $u = 0$, i.e. $u(x, 0) = f(x) = 0$

Hence, \[0 = \sum_{n=1}^{\infty} \left\{ Q_n \sin \frac{n\pi x}{8} \right\} \]

where, from Fourier coefficients, $Q_n = 2 \times$ mean value of $x(8 - x) \sin \frac{n\pi x}{8}$ from $x = 0$ to $x = 8$,

i.e. \[Q_n = \frac{2}{8} \int_{0}^{8} x(8 - x) \sin \frac{n\pi x}{8} \, dx = \frac{1}{4} \left\{ \int_{0}^{8} 8x \sin \frac{n\pi x}{8} \, dx - \int_{0}^{8} x^2 \sin \frac{n\pi x}{8} \, dx \right\} \]

Using integration by parts, \[\frac{1}{4} \int_{0}^{8} 8x \sin \frac{n\pi x}{8} \, dx = \left(\frac{16}{n\pi} \right) \cos n\pi + \left(\frac{16}{(n\pi)^2} \right) \sin n\pi \]

and

\[\frac{1}{4} \int_{0}^{8} x^2 \sin \frac{n\pi x}{8} \, dx = \left(\frac{2}{n\pi} \right)^2 \cos n\pi - \left(\frac{4}{(n\pi)^2} \right) \sin n\pi \]

\[= 0 \text{ (when } n \text{ is even)} \quad \text{and} \quad \left(\frac{8}{\pi} \right)^3 \text{ (when } n \text{ is odd)} \]

Hence, the required solution is: \[u(x, t) = \sum_{n=1}^{\infty} \left\{ Q_n e^{-p^2ct} \sin \frac{n\pi x}{8} \right\} = \sum_{n=1}^{\infty} Q_n e^{-p^2 \left(\frac{n\pi}{8} \right)^2 t} \sin \frac{n\pi x}{8} \]

\[= \left(\frac{8}{\pi} \right)^3 \sum_{n(odd)}^{\infty} \frac{1}{n^3} e^{-\frac{n^2\pi^2 t}{64}} \sin \frac{n\pi x}{8} \]

3. The ends of an insulated rod PQ, 20 units long, are maintained at 0°C. At time $t = 0$, the temperature within the rod rises uniformly from each end reaching 4°C at the mid-point of PQ.

Find an expression for the temperature $u(x, t)$ at any point in the rod, distant x from P at any time t after $t = 0$. Assume the heat conduction equation to be \[\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t} \] and take $c^2 = 1$

The temperature along the length of the rod is shown in the diagram below.
The heat conduction equation is \(\frac{\partial^2 u}{\partial x^2} = \frac{1}{c^2} \frac{\partial u}{\partial t} \) and the given boundary conditions are:

\[u(0, t) = 0, \quad u(20, t) = 0 \quad \text{and} \quad u(x, 0) = 0 \]

Assuming a solution of the form \(u = XT \), then,

\[X = A \cos px + B \sin px \]

and \(T = k e^{-\nu^2 c t} \)

Thus, the general solution is given by: \(u(x, t) = \{ P \cos px + Q \sin px \} e^{-\nu^2 c t} \)

\[u(0, t) = 0 \quad \text{thus} \quad 0 = P e^{-\nu^2 c t} \quad \text{from which,} \quad P = 0 \quad \text{and} \quad u(x, t) = \{ Q \sin px \} e^{-\nu^2 c t} \]

Also, \(u(20, t) = 0 \quad \text{thus} \quad 0 = \{ Q \sin 20p \} e^{-\nu^2 c t} \)

Since \(Q \neq 0, \sin 20p = 0 \) from which, \(20p = n\pi \) where \(n = 1, 2, 3, \ldots \) and \(p = \frac{n\pi}{20} \)

Hence, \(u(x, t) = \sum_{n=1}^{\infty} \{ Q_n e^{-\nu^2 c t} \sin \frac{n\pi x}{20} \} \)

where, from Fourier coefficients, \(2 \times \) the mean value from \(x = 0 \) to \(x = 20 \)

\[Q_n = \frac{2}{20} \left[\int_0^{10} \left(\frac{2}{5} x \right) \sin \frac{n\pi x}{20} \, dx + \int_{10}^{20} \left(\frac{2}{5} x - 8 \right) \sin \frac{n\pi x}{20} \, dx \right] \quad \text{(see above diagram)} \]

\[= \frac{1}{10} \left\{ \left(\frac{2}{5} \right) \cos \frac{n\pi x}{20} + \frac{2}{5} \sin \frac{n\pi x}{20} \right\}^{10}_0 \left[\left(\frac{2}{5} \right) \cos \frac{n\pi x}{20} + \frac{2}{5} \sin \frac{n\pi x}{20} \right]^{20}_{10} - \left(\frac{2}{5} \right) \cos \frac{n\pi x}{20} + \frac{2}{5} \sin \frac{n\pi x}{20} \right\}^{20}_0 \]

\[= \frac{1}{10} \left[\left(\frac{-4 \cos \frac{n\pi}{2}}{n\pi} + \frac{4 \sin \frac{n\pi}{2}}{n\pi^2} \right) - (0) \right] + \left[\left(\frac{8 \cos \frac{n\pi}{2}}{n\pi} + 0 - 8 \cos \frac{n\pi}{2} \right) - \left(\frac{4 \cos \frac{n\pi}{2}}{n\pi} - \frac{4 \sin \frac{n\pi}{2}}{n\pi^2} - \frac{8 \cos \frac{n\pi}{2}}{20} \right) \right] \]
\[
\begin{align*}
&= \frac{1}{10} \left\{ -4 \cos \frac{n\pi}{2} \left(\frac{n\pi}{20} \right)^2 + 8 \cos n\pi \left(\frac{n\pi}{20} \right) - 8 \cos \frac{n\pi}{2} \left(\frac{n\pi}{20} \right)^2 + 8 \cos n\pi \left(\frac{n\pi}{20} \right)^2 \right\} \\
&= \frac{1}{10} \left\{ -8 \cos n\pi \left(\frac{n\pi}{20} \right)^2 + 8 \sin n\pi \left(\frac{n\pi}{20} \right) \right\} = \frac{1}{10} \left\{ 8 \sin n\pi \left(\frac{n\pi}{20} \right)^2 \right\} \\
&= 0 \text{ when } n \text{ is even} \\
&= \frac{8}{10} \left(\frac{20}{n\pi} \right)^2 \sin \frac{n\pi}{2} = \frac{320}{n^2 \pi^2} \sin \frac{n\pi}{2} \text{ when } n \text{ is odd}
\end{align*}
\]

Hence, the required solution is:

\[
\begin{align*}
\sum_{n=1}^{\infty} \frac{320}{n^2 \pi^2} \sin \frac{n\pi}{2} e^{-\frac{\pi^2 n^2 (1)^2}{200}} \sin \frac{n\pi x}{20} \\
= \frac{320}{\pi^2} \sum_{n(\text{odd})=1}^{\infty} \frac{1}{n^2} \sin \frac{n\pi}{2} \sin \frac{n\pi x}{20} e^{-\left(\frac{n^2 \pi^2 i}{400} \right)}
\end{align*}
\]
1. A rectangular plate is bounded by the lines \(x = 0, y = 0, x = 1 \) and \(y = 3 \). Apply the Laplace equation \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \) to determine the potential distribution \(u(x, y) \) over the plate, subject to the following boundary conditions:

\[
\begin{align*}
&u = 0 \text{ when } x = 0 \quad 0 \leq y \leq 2,
&u = 0 \text{ when } x = 1 \quad 0 \leq y \leq 2,
&u = 0 \text{ when } y = 2 \quad 0 \leq x \leq 1,
&u = 5 \text{ when } y = 3 \quad 0 \leq x \leq 1
\end{align*}
\]

Initially a solution of the form \(u(x, y) = X(x)Y(y) \) is assumed, where \(X \) is a function of \(x \) only, and \(Y \) is a function of \(y \) only. Simplifying to \(u = XY \), determining partial derivatives, and substituting into \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \) gives:

\[
X''Y + XY'' = 0
\]

Separating the variables gives:

\[
\frac{X''}{X} = -\frac{Y''}{Y}
\]

Letting each side equal a constant, \(-p^2 \) gives the two equations:

\[
X'' + p^2 X = 0 \quad \text{and} \quad Y'' - p^2 Y = 0
\]

from which, \(X = A \cos px + B \sin px \)

and \(Y = C e^{py} + D e^{-py} \) or \(Y = C \cosh py + D \sinh py \) or \(Y = E \sinh p(y + \phi) \)

Hence \(u(x, y) = XY = \{A \cos px + B \sin px \} \{E \sinh p(y + \phi)\} \)

or \(u(x, y) = \{P \cos px + Q \sin px \} \{\sinh p(y + \phi)\} \) where \(P = AE \) and \(Q = BE \)

The first boundary condition is: \(u(0, y) = 0 \), hence \(0 = P \sinh p(y + \phi) \) from which, \(P = 0 \)

Hence, \(u(x, y) = Q \sin px \sinh p(y + \phi) \)

The second boundary condition is: \(u(1, y) = 0 \), hence \(0 = Q \sin p(1) \sinh p(y + \phi) \)

from which, \(\sin p = 0 \), hence, \(p = n\pi \) for \(n = 1, 2, 3, \ldots \)

The third boundary condition is: \(u(x, 2) = 0 \), hence \(0 = Q \sin px \sinh p(2 + \phi) \)

from which, \(\sinh p(2 + \phi) = 0 \) and \(\phi = -2 \)

Hence, \(u(x, y) = Q \sin px \sinh p(y - 2) \)

Since there are many solutions for integer values of \(n \)

\[
u(x, y) = \sum_{n=1}^{\infty} Q_n \sin px \sinh p(y - 2) = \sum_{n=1}^{\infty} Q_n \sin n\pi x \sinh n\pi(y - 2) \quad (a)
\]
The fourth boundary condition is: \(u(x, 3) = 5 = f(x) \), hence, \(f(x) = \sum_{n=1}^{\infty} Q_n \sin n\pi x \sinh n\pi(3 - 2) \)

From Fourier series coefficients,

\[Q_n \sinh n\pi = 2 \times \text{the mean value of } f(x) \sin n\pi x \text{ from } x = 0 \text{ to } x = 1 \]

i.e.

\[= \frac{2}{1} \int_{0}^{1} 5 \sin n\pi x \, dx = 10 \left[-\frac{\cos n\pi x}{n\pi} \right]_{0}^{1} = -\frac{10}{n\pi} (\cos n\pi - \cos 0) = \frac{10}{n\pi} (1 - \cos n\pi) \]

\[= 0 \text{ (for even values of } n) \]

\[= \frac{20}{n\pi} \text{ (for odd values of } n) \]

Hence, \(Q_n = \frac{20}{n\pi (\sinh n\pi)} = \frac{20}{n\pi} \cosh n\pi \)

Hence, from equation (a), \(u(x, y) = \sum_{n=1}^{\infty} Q_n \sin n\pi x \sinh n\pi(y - 2) \)

\[= \frac{20}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \cosh n\pi \sin n\pi x \sinh n\pi(y - 2) \]

\[\]

2. A rectangular plate is bounded by the lines \(x = 0, y = 0, x = 3, y = 2 \). Determine the potential distribution \(u(x, y) \) over the rectangle using the Laplace equation \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \), subject to the following boundary conditions: \(u(0, y) = 0 \quad 0 \leq y \leq 2, \quad u(3, y) = 0 \quad 0 \leq y \leq 2, \quad u(x, 2) = 0 \quad 0 \leq x \leq 3, \quad u(x, 0) = x(3 - x) \quad 0 \leq x \leq 3 \)

Initially a solution of the form \(u(x, y) = X(x)Y(y) \) is assumed, where \(X \) is a function of \(x \) only, and \(Y \) is a function of \(y \) only. Simplifying to \(u = XY \), determining partial derivatives, and substituting into \(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0 \) gives:

\[X''Y + XY'' = 0 \]

Separating the variables gives:

\[\frac{X''}{X} = -\frac{Y''}{Y} \]

Letting each side equal a constant, \(-p^2\) gives the two equations:

\[X'' + p^2 X = 0 \quad \text{and} \quad Y'' - p^2 Y = 0 \]

from which, \(X = A \cos px + B \sin px \)

and \(Y = C e^{py} + D e^{-py} \) or \(Y = C \cosh py + D \sinh py \) or \(Y = E \sinh p(y + \phi) \)

Hence \(u(x, y) = XY = \{A \cos px + B \sin px\} \{E \sinh p(y + \phi)\} \)

or \(u(x, y) = \{P \cos px + Q \sin px\} \{\sinh p(y + \phi)\} \)

1330 © 2014, John Bird
The first boundary condition is: \(u(0, y) = 0 \), hence \(0 = P \sinh p(y + \phi) \) from which, \(P = 0 \)

Hence, \(u(x, y) = Q \sin px \sinh p(y + \phi) \)

The second boundary condition is: \(u(3, y) = 0 \), hence \(0 = Q \sin 3p \sinh p(y + \phi) \)

from which, \(\sin 3p = 0 \), hence, \(3p = n\pi \) i.e. \(p = \frac{n\pi}{3} \) for \(n = 1, 2, 3, \ldots \)

The third boundary condition is: \(u(x, 2) = 0 \), hence, \(0 = Q \sin px \sinh p(2 + \phi) \)

from which, \(\sinh p(2 + \phi) = 0 \) and \(\phi = -2 \)

Hence, \(u(x, y) = Q \sin px \sinh p(y - 2) \)

Since there are many solutions for integer values of \(n \),

\[
 u(x, y) = \sum_{n=1}^{\infty} Q_n \sin px \sinh p(y - 2) = \sum_{n=1}^{\infty} Q_n \sin \frac{n\pi}{3} x \sinh \frac{n\pi}{3} (y - 2) \quad (a)
\]

The fourth boundary condition is: \(u(x, 0) = x(3 - x) = 3x - x^2 = f(x) \),

hence,

\[
 f(x) = \sum_{n=1}^{\infty} Q_n \sin \frac{n\pi}{3} x \sinh \frac{n\pi}{3} (-2)
\]

From Fourier series coefficients,

\[
 Q_n \sinh \frac{-2n\pi}{3} = 2 \times \text{the mean value of } f(x) \sin \frac{n\pi}{3} x \text{ from } x = 0 \text{ to } x = 3
\]

\[
 = \frac{2}{1} \int_0^3 (3x - x^2) \sin \frac{n\pi}{3} x \, dx
\]

\[
 = 2 \left\{ \left[-3x \cos \frac{n\pi x}{3} + 3\sin \frac{n\pi x}{3} \right]_0^3 - \left[-x^2 \cos \frac{n\pi x}{3} + 2x \sin \frac{n\pi x}{3} + 2 \cos \frac{n\pi x}{3} \right]_0^3 \right\}
\]

by integration by parts (see Chapter 68)

\[
 = 2 \left\{ -9\cos n\pi + 9\cos n\pi - \frac{2\cos n\pi}{3} + \frac{2\cos n\pi}{3} \right\} = 2 \left\{ \frac{27}{n^3\pi^3} \left(2 - 2\cos n\pi \right) \right\}
\]

\[
 = \frac{54}{n^3\pi^3} (2 - 2\cos n\pi)
\]

\[
 = 0 \text{ (for even values of } n), \quad = \frac{216}{n^3\pi^3} \text{ (for odd values of } n)
\]
Hence,
\[Q_n = \frac{216}{n^3\pi^3} \left(\sinh \frac{-2n\pi}{3} \right) = \frac{216}{n^3\pi^3} \cosec \frac{-2n\pi}{3} \]

Hence, from equation (a),
\[u(x, y) = \sum_{n=1}^{\infty} Q_n \sin \frac{n\pi}{3} x \sinh \frac{n\pi}{3} (y - 2) = \sum_{n=1}^{\infty} \frac{216}{n^3\pi^3} \cosec \frac{-2n\pi}{3} \sin \frac{n\pi x}{3} \sinh \frac{n\pi}{3} (y - 2) \]
\[= \frac{216}{\pi^3} \sum_{n \ (\text{odd})=1}^{\infty} \frac{1}{n^3} \cosec \frac{2n\pi}{3} \sin \frac{n\pi x}{3} \sinh \frac{n\pi}{3} (2 - y) \]